Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243903

ABSTRACT

Background: High-titer neutralizing anti-cytokine autoantibodies have been shown to be involved in several acquired diseases, including pulmonary alveolar proteinosis, cryptococcal meningitis, and disseminated/extrapulmonary Nocardia infections (anti-GM-CSF autoantibodies), disseminated mycobacterial disease (anti-IFN-gamma autoantibodies), and some cases of severe COVID-19 infection (anti-type 1 interferons). Currently, patient blood samples are shipped via courier and require temperaturecontrolled conditions for transfer. This method is expensive and requires patients to have access to medical personnel to draw the blood. However, the well-established technique of collecting blood on a paper card as a dried blood spot (DBS) for diagnosis offers a point of care alternative which can be performed with a simple finger prick. This method is less invasive, cheaper, and allows for easy transport of patient samples. Method(s): 30 uL of whole blood from patients was blotted on filter paper and stored at 4C until use. The filter paper was hole punched and each punched spot was eluted with 150 uL of a 0.05% Tween PBS solution at room temperature overnight. The eluate was screened for anti-cytokine autoantibodies using a particle-based approach. Patient plasma was also screened in conjunction for comparison. Result(s): We confirmed the presence of autoantibodies in the DBS eluate from 4 previously diagnosed patients with anti-GM-CSF autoantibodies and 2 patients with anti-IFN-gamma autoantibodies. Functional studies showed the DBS eluate from a patient with anti-GM-CSF autoantibodies was able to block GM-CSF-induced STAT-5 phosphorylation in normal PBMC. As a proof of concept and to increase the number of patients evaluated, we also confirmed the presence of anti-cytokine autoantibodies using dried plasma eluate from 9 patients with known anti-GM-CSF autoantibodies and 9 patients with anti-IFN-gamma autoantibodies. Levels detected in DBS analyses were comparable to the levels found in plasma from the same patients not subjected to blotting and elution. Temperature studies showed that the autoantibodies were detected at similar levels when stored at 4C, 25C, and 40C for a week. Conclusion(s): The diagnosis of pathogenic anti-cytokine autoantibodies should be considered in the context of unusual or adult-onset infections, and screening for this diagnosis can be performed with dried blood spot testing.Copyright © 2023 Elsevier Inc.

2.
Journal of Biological Chemistry ; 299(3 Supplement):S396-S397, 2023.
Article in English | EMBASE | ID: covidwho-20243840

ABSTRACT

Objective: Immunohistochemistry of post-mortem lung tissue from Covid-19 patients with diffuse alveolar damage demonstrated marked increases in chondroitin sulfate and CHST15 and decline in N-acetylgalactosamine-4-sulfatase. Studies were undertaken to identify the mechanisms involved in these effects. Method(s): Human primary small airway epithelial cells (PCS 301-010;ATCC) were cultured and exposed to the SARSCoV- 2 spike protein receptor binding domain (SPRBD;AA: Lys310-Leu560;Amsbio). Expression of the spike protein receptor, angiotensin converting enzyme 2 (ACE2), was enhanced by treatment with Interferon-beta. Promoter activation, DNA-binding, RNA silencing, QPCR, Western blots, ELISAs, and specific enzyme inhibitors were used to elucidate the underlying molecular mechanisms. Result(s): Treatment of the cultured cells by the SPRBD led to increased CHST15 and CHST11 expression and decline in ARSB expression. Sulfotransferase activity, total chondroitin sulfate, and sulfated glycosaminoglycan (GAG) content were increased. Phospho-T180/T182-p38-MAPK and phospho- S423/S425-Smad3 were required for the activation of the CHST15 and CHST11 promoters. Inhibition by SB203580, a phospho-p38 MAPK inhibitor, and by SIS3, a Smad3 inhibitor, blocked the CHST15 and CHST11 promoter activation. SB203580 reversed the SPRBD-induced decline in ARSB expression, but SIS3 had no effect on ARSB expression or promoter activation. Phospho-p38 MAPK was shown to reduce retinoblastoma protein (RB) S807/S811 phosphorylation and increase RB S249/T252 phosphorylation. E2F-DNA binding declined following exposure to SPRBD, and SB203580 reversed this effect. This indicates a mechanism by which SPRBD, phospho-p38 MAPK, E2F, and RB can regulate ARSB expression and thereby impact on chondroitin 4-sulfate and dermatan sulfate and molecules that bind to these sulfated GAGs, including Interleukin-8, bone morphogenetic protein-4, galectin-3 and SHP-2 (Src homology region 2-containing protein tyrosine phosphatase 2). Conclusion(s): The enzyme ARSB is required for the degradation of chondroitin 4-sulfate and dermatan sulfate, and accumulation of these sulfated GAGs can contribute to lung pathophysiology, as evident in Covid-19. Some effects of the SPRBD may be attributable to unopposed Angiotensin II, when Ang1-7 counter effects are diminished due to binding of ACE2 with the SARS-CoV-2 spike protein and reduced production of Ang1-7. Aberrant cell signaling and activation of the phospho-p38 MAPK and Smad3 pathways increase CHST15 and CHST11 production, which can contribute to increased chondroitin sulfate in infected cells. Decline in ARSB may occur as a consequence of effects of phospho-p38 MAPK on RB phosphorylation and E2F1 availability. Decline in ARSB and the resulting impaired degradation of sulfated GAGs have profound consequences on cellular metabolic, signaling, and transcriptional events. Funding is VA Merit Award.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

3.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20240620

ABSTRACT

RAG mutations cause various phenotypes: SCID, Omenn syndrome (OS), leaky SCID (LS) and combined immunodeficiency (CID). We had previously reported autoantibodies targeting IFN-alpha, IFN-omega in patients with RAG deficiency. However, how the presence of such antibodies correlated with the severity of the clinical phenotype and with the recombination activity of the mutant proteins was unknown. To address this, we have studied anti-cytokine antibodies in 118 patients with RAG defects (SCID, n = 28;OS, n = 29;LS, n = 29;CID, n = 32), and in 42 controls (protocols NCT03394053 and NCT03610802). RAG mutant proteins associated with CID and LS retained 35.6 +/- 4.3 (mean +/- SE) and 29.8 +/- 5.1% recombination activity respectively, compared to wildtype protein, which was significantly higher than the recombination activity of the mutant RAG proteins associated with OS (4.1 +/- 1.5%) and SCID (5.7 +/- 2.1%) (p < 0.0001). Among 32 CID patients, 24 tested positive for anti-IFN-alpha and 21 for anti-IFN-omega antibodies. Among 29 LS patients, 15 had high levels of anti-IFN-alpha and 13 of anti-IFN-omega antibodies. A minority of the CID and LS patients had also high levels of anti-IFN-beta and anti-IL-22 antibodies. By contrast, none of the OS patients tested positive for anti-cytokine antibodies. High levels of anti-IFN-alpha and anti-IFN-omega antibodies correlated with their neutralizing activity as demonstrated in vitro by analysis of STAT1 phosphorylation upon stimulation of healthy donor monocytes in the presence of the appropriate cytokine and patient's or control plasma. Severe viral infections were recorded in 26/41 patients with CID and LS who tested positive and in 7/20 who tested negative for anti-IFN-alpha and/or anti-IFN-omega antibodies (p <0.05). Among those with anti-IFN antibodies, EBV (n = 8), CMV (n = 6), HSV (n = 5), VZV (n = 4) and adenovirus (n = 4) infections were more common. Two patients had COVID-19, which was fatal in one. Presence of the rubella virus was documented in 5 patients with anti-type I IFN antibodies. These results demonstrate that high levels of neutralizing anti-IFN-alpha and anti-IFN-omega antibodies are common in patients with RAG mutations manifesting as CID and LS, but not in those with OS, and that their presence is associated with a high risk of serious viral infections.Copyright © 2023 Elsevier Inc.

4.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20234616

ABSTRACT

Introduction: Type 1 interferon (IFN) autoantibodies, such as anti-IFNalpha, have pathogenic significance in life-threatening COVID-19 pneumonia. Ten to twenty percent of severe COVID cases are associated with type I IFN autoantibodies. These autoantibodies likely pre-exist while others arise de novo relative to SARS-CoV-2 infection. It is unclear to what extent type I anti-IFN autoantibodies are induced by SARS-CoV-2 infection and contribute to COVID-19 severity. We investigated these phenomena in those with inborn errors of immunity (IEI) and rheumatic disease (RHE). Aim(s): We aim to compare the prevalence and neutralization ability of anti-IFNalpha autoantibodies in IEI and RHE patients using archived blood samples before and after the COVID-19 pandemic began. Method(s): We determined the presence of autoantibodies against IFNalpha in plasma samples by enzyme linked immunosorbent assay in 453 patients with IEI or RHE who were testing either before or after the COVID-19 pandemic began in March 2020. Using flow cytometry, we determined the function of IFNalpha autoantibodies in plasma to block CD4T cell activation by inhibiting STAT-1 phosphorylation. Result(s): We found that 25 patients with IEI or RHE were positive for anti-IFNalpha autoantibodies. 10 out of 229 patient samples collected before the pandemic (4.2%) tested positive whereas 15 out of 224 patient samples collected after the pandemic began (7.0%) were positive. Seven of the 25 patients (28%) who tested positive had neutralizing antibodies in plasma, which prevented STAT-1 phosphorylation in CD4T cells;all of these patients had partial recombination activating gene deficiency (pRD) except for one patient with autoimmunity, leukemia and selective IgA deficiency. One pRD patient had anti-IFNalpha autoantibodies with neutralization capacity before the pandemic, which persisted after hematopoietic stem cell transplantation (HSCT) with full immune reconstitution. The patient was immunized for SARS-CoV-2 before and after HSCT and acquired COVID-19 infection a year after HSCT. The patient was symptomatic but never hospitalized and fully recovered despite having anti-IFNalpha autoantibodies. Conclusion(s): Anti-IFNalpha autoantibody levels were comparable before and after the start of the COVID-19 pandemic in IEI and RHE patients but only 28% of cases were neutralizing. The clinical implications of these autoantibodies are yet to be determined.Copyright © 2023 Elsevier Inc.

5.
Cell Transplantation ; 32:15-16, 2023.
Article in English | EMBASE | ID: covidwho-2324818

ABSTRACT

The COVID-19 pandemic is a global outbreak of coronavirus, an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One in five adults who have had COVID-19 in the past was still experiencing any one of the symptoms of long COVID like headache, brain fog, fatigue, and shortness of breath. Up to 30% of individuals with mild to severe infection show diverse neurological symptoms, including dementias. Hence, it is very much important to characterize the neurotropism and neurovirulence of the SARS-CoV-2 virus. This helps us understand the mechanisms involved in initiating inflammation in the brain, further leading to the development of earlyonset Alzheimer's disease and related dementias (ADRDs). In our brain gene expression analysis, we found that severe COVID-19 patients showed increased expression of innate immune response genes and genes that are implicated in AD pathogenesis. To study the infection-induced ADRDs, we used a mouse-adapted strain of the SARS-CoV-2 (MA10) virus to infect mice of different age groups (3, 6, and 20 Months). In this study, we found that aged mice showed evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferoninducible gene Ifi204, and complement genes like C4 and C5AR1. Brain histopathology also showed the AD signature including tau-phosphorylation, tau-oligomerization, and alpha-synuclein expression in aged MA10-infected mice. The results from gene expression profiling of SARS-CoV-2 infected and AD brains and studies with MA10 aged mice show that COVID-19 infection increases the risk of AD in the aged population. Furthermore, this study helps us to understand the crucial molecular markers that are regulated during COVID infection that could act as major players in developing ADRDs. Future studies will be involved in understanding the molecular mechanisms of ADRD in response to COVID infection and developing novel therapies targeting AD.

6.
Journal of Biological Chemistry ; 299(3 Supplement):S575, 2023.
Article in English | EMBASE | ID: covidwho-2320166

ABSTRACT

Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic DELTAserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) DELTAserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain >=10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses. GCE4All Biomedical Technology Development and Dissemination Center was supported by National Institute of General Medical Science, OSU NMR Facility funded in part by the National Institutes of Health, the Medical Research Foundation at OHSU and the Collins Medical Trust, National Science Foundation EAGER, and by the M. J. Murdock Charitable Trust.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

7.
Journal of Biological Chemistry ; 299(3 Supplement):S641, 2023.
Article in English | EMBASE | ID: covidwho-2319165

ABSTRACT

The N protein of the SARS-CoV-2 virion is critical for viral genome packaging via RNA binding and regulation of viral transcription at the replication-transcription complex (RTC). The N protein can be divided into five main domains, and the central region is the linker, which is predicted to be primarily disordered and has not been heavily studied. The linker is Serine-Arginine Rich, which is phosphorylated at multiple sites by host kinases during infection, thereby promoting the N protein's role in viral transcription. Phosphorylation is a critical process for the regulation of many cellular processes and can provide recognition sites for binding complexes. In a study that examined the recognition of the SARS-CoV-2 N protein by the human 14-3-3 protein, the linker was found to contain critical phosphosites for 14-3-3 binding. The goals of this project are to determine the structure, dynamics, and RNA interactions of the Serine-Arginine Rich linker region. To accomplish this, we performed Nuclear Magnetic Resonance spectroscopy (NMR) experiments to analyze the structure of the linker region of the N protein and its ability to bind viral RNA. NMR confirms predictions that the linker is not entirely unstructured and it is able to bind RNA. The linker region of the N protein with phosphoserine incorporated at S188 was also examined via an NMR titration experiment with 1-1000 RNA. Compared to wild type, the incorporation of phosphorylation decreases binding. Other biophysical techniques such as Analytical Ultracentrifugation (AUC) and Multi-Angle Light Scattering (MALS) are used to identify the association state of the linker and the size of the resulting protein-RNA complex. We are currently working to biophysically characterize the structure, dynamics, and viral RNA binding ability of a mutation found in the Delta and Omicron variants: the R203M linker, which have been shown to enhance viral infectivity. This work was supported by the NSF EAGER grant NSF/ MCB 2034446 and URSA Engage. Support to facilities includes the Oregon State University NMR Facility funded in part by NIH, HEI Grant 1S10OD018518, and by the M. J. Murdock Charitable Trust grant # 2014162.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

8.
Topics in Antiviral Medicine ; 31(2):93, 2023.
Article in English | EMBASE | ID: covidwho-2316282

ABSTRACT

Background: Infection with SARS-CoV-2 triggers reprogramming through global transcriptomic changes that drive the development of Coronavirus disease 2019 (COVID-19). Although the expression and functions of proteincoding transcripts have been widely studied in SARS-CoV-2 infection, most of the transcriptome consists of non-protein-coding RNAs (ncRNAs). Long noncoding RNAs (lncRNAs), which constitute a large proportion of the transcriptome, regulate immune responses and play prominent roles in health and disease. However, the impact of lncRNAs on SARS-CoV-2 infection is poorly understood. Our study will provide fundamental insights into the role of lncRNAs in SARS-CoV-2 infection. Method(s): We hypothesized that SARS-CoV-2-induced lncRNAs are critical regulators of viral replication and immune response. To test our hypothesis, we identified lncRNAs with significant differential expression in SARS-CoV-2 infected vs. uninfected cells across two cell types (A549-hACE2 and Calu) from published transcriptome data. We silenced the expression of the top lncRNA Bre- AS1 (BA) a human lung epithelial cell model (A549 cells stably expressing hACE2 and hTMPRSS2, A549AT) using lncRNA-specific ASO (lncsi) or negative control (NC) and compared viral replication in lncsi vs. NC cells. BA-silencing (BA-si) increased SARS-CoV-2 replication. and inhibited the expression of antiviral interferon-stimulated genes (ISG). (Tyr 705) pSTAT3 forms suppressor molecular complexes (pSTAT3-pSTAT1 or pSTAT3-PLSCR2) that inhibit ISG transcription. Using molecular methods such as gene-silencing, immunoprecipitation, western blot, and measuring promoter activity, we further show that Bre-AS1 inhibits the phosphorylation of STAT3 and enhances ISG transcription. Result(s): Our data show that cellular lncRNA, Bre-AS1 enhances antiviral interferon-stimulated genes (ISG) expression and inhibits replication of SARSCoV- 2. Our data show that Bre-AS1 inhibits the (Tyr705) phosphorylation of STAT3 that forms ISG repressor complexes (pSTAT3-pSTAT1 or pSTAT3-PLSCR2) and thus enhances ISG transcription. Conclusion(s): Cellular lncRNA Bre-AS1 enhances expression of antiviral interferon-stimulated genes and inhibits the replication of SARS-CoV-2. Our data show that cellular lncRNAs could play significant roles in immune response and viral propagation. Thus, unraveling the mechanisms of lncRNA-mediated regulation of virus replication and immune response may lead to identifying new, highly selective therapeutic targets Bre-AS1 inhibits STAT3 phosphorylation and enhances ISG transcription.

9.
Journal of Hypertension ; 41:e88, 2023.
Article in English | EMBASE | ID: covidwho-2244622

ABSTRACT

Objective: COVID19 is associated with vascular inflammation. IFN-alpha (IFNa) and IFN-lambda3 (IFNl3) are potent cytokines produced in viral infections. Their effects involve interferon-stimulated genes (ISGs) and may influence expression of angiotensin-converting enzyme 2 (ACE2), the receptor for S-protein (S1P) of SARS-CoV-2. We hypothesized that S1P-induced immune/inflammatory responses in endothelial cells (EC) are mediated via IFN-activated pathways Design and methods: Human ECs were stimulated with S1P (1 mg/mL), IFNa (100ng/mL) or IFNl3 (100IU/mL). Because ACE2, ADAM17 and TMPRSS2 are important for SARS-CoV-2 infection, we used inhibitors of ADAM17 (marimastat, 3.8 nM), ACE2 (MLN4760, 440pM), and TMPRSS2 (camostat, 50 mM). Gene and protein expression was investigated by real-time PCR and immunoblotting, respectively. Vascular function was assessed in mesenteric arteries from wild-type (WT) normotensive and hypertensive (LinA3) mice and in ISG15-deficient (ISG15KO) mice. Results: S1P increased expression of IFNa (3-fold), IFNl3 (4-fold) and ISGs (2-fold) in EC (p < 0.05). EC responses to IFNa (ISG15: 16-fold) were greater than to IFNl3 (ISG15: 1.7-fold) (p < 0.05). S1P increased gene expression of IL-6 (1.3-fold), TNFa (6.2-fold) and IL-1b (3.3-fold), effects that were amplified by IFNs. Only the ADAM17 inhibitor marimastat inhibited S1P effects. IFNa and IFNl3 increase protein expression of ADAM17 (27%) and TMPRSS2 (38%). No changes were observed on ACE2 expression. This was associated with increased phosphorylation of Stat1 (134%), Stat2 (102%), ERK1/2 (42%). EC production of IL-6 was increased by IFNa (1,230pg/mL) and IFNl3 (1,124pg/mL) vs control (591pg/mL). Nitric oxide generation and eNOS phosphorylation (Ser1177) were reduced by IFNa (40%) and IFNl3 (40%). Vascular functional responses demonstrated that endothelium-dependent vasorelaxation (% Emax) in vessels from WT-mice stimulated with IFNa (67%) and IFNl3 (71%) were reduced vs control (82%) (p < 0.05). Responses were not altered in vessels from ISG15KO mice. Increased contraction was observed only in vessels from hypertensive mice treated with IFNa (9.1 ± 0.5mN vs control: 7.3 ± 0.3mN) (p < 0.05). Conclusions: In ECs, S1P, IFNa and IFNl3 increased ISG15 and IL-6 by mechanisms dependent on ADAM17. IFNs amplifies endothelial cell inflammatory responses and induced vascular dysfunction through ISG15-dependent mechanisms, with augmented effects in hypertension. Our findings demonstrate that S1P induces immune/inflammatory responses that may be important in endotheliitis associated with COVID-19. This may be especially important in the presence of cardiovascular risk factors, including hypertension.

10.
Journal of Hypertension ; 41:e139, 2023.
Article in English | EMBASE | ID: covidwho-2238591

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is an emerging respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2). Recent studies have suggested numerous hypotheses that may explain multi-organ dysfunction during a COVID-19 infection. One possible hypothesis posits that the renin-angiotensin system dysregulation before SARS-CoV-2 infection could exacerbate disease symptoms and severity, especially in COVID-19 patients with underlying comorbidities. Objective: This study sought to investigate the effect of exogenous angiotensin II (Ang II) on peripheral blood mononuclear cells (PBMCs) stimulated with SARSCoV- 2 peptide pool. Methods: PBMCs from recovered COVID-19 patients (n = 18) were used in this study. SARS-CoV-2 specific t-cell responses were measured using activation induced cell marker assay and intracellular cytokine staining (ICS) assay, while enzyme-linked immunosorbent assay (ELISA) and ICS assays determined functional capability and polarization. Additionally, the relative level of protein phosphorylation in PBMCs was measured using a phosphokinase array. Results: Our results showed that in vitro Ang II treatment significantly increased the magnitude of SARS-CoV-2 specific t-cell response in stimulated PBMCs with SARS-CoV-2 peptide pool. Moreover, the phosphorylation level of numerous proteins implicated in cardiovascular diseases, inflammation, and viral infection showed significant increase in the presence of Ang II. Mitogenic stimulation of PBMCs after Ang II and SARS-CoV-2 peptide pool stimulation showed functional polarization of CD4+ and CD8+ t-cells toward Th1/Th17 and Th17 phenotypes, respectively. Meanwhile, ELISA showed an increased production of IL-1b and IL-6 in Ang II-stimulated PBMCs without affecting the reduction of IL-10 level resulting from SARS-CoV-2 peptide pool stimulation. Conclusion: To our knowledge, the present study is the first to demonstrate that Ang II exaggerates SARS-CoV-2 specific t-cells response. Therefore, during COVID-19 infection Ang II may aggravate the inflammatory response and change the immune response toward a more inflammatory profile against SARS-CoV-2 infection, leading to serious complications and worse outcomes during COVID-19 infection.

11.
J Biol Chem ; 298(12): 102613, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2069255

ABSTRACT

Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic ΔserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) ΔserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain ≥10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses.

12.
HemaSphere ; 6:2239-2240, 2022.
Article in English | EMBASE | ID: covidwho-2032132

ABSTRACT

Background: Mantle cell lymphoma (MCL) is a B-cell tumor which often relapses. BCR inhibitors (Ibrutinib, Acalabrutinib) and antiapoptotic BCL2-family members blockers BH3-mimetics (Venetoclax, ABT-199) are effective drugs to fight MCL. However, the disease remains incurable, due to therapy resistance, even to the promising Venetoclax and Ibrutinib combination. Therefore, there is a profound need to explore novel useful therapeutic targets. CK2 is a S/T kinase overexpressed in several solid and blood tumors. We demonstrated that CK2, operating through a 'non-oncogene addiction' mechanism promotes tumor cell survival, and counteracts apoptosis, by activating pro-survival signaling cascades, such as NF-κ B, STAT3 and AKT. CK2 could regulate also BCL2 family members. The CK2 chemical inhibitor CX-4945 (Silmitasertib, Sil) is already under scrutiny in clinical trials in relapsed multiple myeloma, solid tumors and COVID-19. Aims: In this work, we tested the effect of CK2 chemical inhibition or knock down on Venetoclax (Ven)-induced cytotoxicity in MCL pre-clinical models to effectively reduce MCL cell growth and clonal expansion. Methods: CK2 expression and BCR/BCL2 related signaling components were analyzed in MCL cells and control cells by Western blotting. CK2 and BCL2 inhibition was obtained with Sil and Ven, respectively and with CK2 gene silencing through the generation of anti-CK2 shRNA IPTG-inducible MCL cell clones. Survival, apoptosis, mitochondrial membrane depolarization and proliferation were investigated by FACS analysis of AnnexinV/PI and JC-10 staining. The synergic action of Ven and Sil was analyzed by the Chou-Talalay combination index (CI) method. CK2 knock down in vivo was obtained in xenograft NOD-SCID mouse models Results: CK2 inactivation (with Sil or CK2 silencing) determined a reduction in the activating phosphorylation of S529 p65/RelA and S473 and S129 AKT, important survival cascades for MCL. Sil or CK2 silencing caused BCL2 and related MCL1 protein reduction, causing cell death. Importantly, we confirmed these results also in an in vivo xenograft mouse model of CK2 knockdown in MCL. Sil +Ven combination increased MCL cell apoptosis, as judged by the augmented frequency of Annexin V positive cells and expression of cleaved PARP protein, and JC-10 mitochondrial membrane depolarization, with respect to the single treatments. Captivatingly, Sil or CK2 gene silencing led to a substantial reduction of the Ven-induced increase of MCL-1, potentially counteracting a deleterious Ven-induced drawback. Analysis of cell cycle distribution confirmed an increased frequency of apoptotic cells in the sub G1 phase in CK2-silenced cells and a modulation of the other phases of the cell cycle. Remarkably, the calculated CI less than 1 suggested a strong synergic cell-killing effect between Sil and Ven, on all the cell lines tested, including those less sensitive or resistant to Ven Summary/Conclusion: We demonstrated that the simultaneous inhibition/knock down of CK2 and BCL2 synergistically cooperates in inducing apoptosis and cell cycle arrest of MCL malignant B-lymphocytes and has the potential of reducing MCL clonal growth, also counterbalancing mechanism of resistance that may arise with Ven. Therefore, CK2 is a rational therapeutic target for the treatment of MCL to be tested in combination with Ibrutinib or Ven.

13.
Journal of Hepatology ; 77:S308, 2022.
Article in English | EMBASE | ID: covidwho-1996632

ABSTRACT

Background and aims: Transforming growth factor beta (TGF-beta) signalling is a key driver of liver fibrosis. In primary sclerosing cholangitis (PSC), integrins over-expressed on injured cholangiocytes (alpha-v/beta-6) and myofibroblasts (alpha-v/beta-1) regulate TGFbeta activity. PLN-74809 is an oral, once-daily, dual-selective inhibitor of integrins alpha-v/beta-6 and alpha-v/beta-1 in development for the treatment of PSC and idiopathic pulmonary fibrosis. It has shown favourable tolerability in over 280 healthy participants, reduced TGF-beta signalling and achieved high target engagement in human lungs. Pre-clinical evaluation of antifibrotic activity resulting from dual integrin inhibition was performed to support clinical evaluation. Method: PLN-74809 was administered orally for 6 weeks in BALBc. Mdr2-/- mice with established fibrosis. A tool alpha-v/beta-6 and alpha-v/beta-1 inhibitor compound, PLN-75068, was tested therapeutically in a diet-induced mouse model of biliary fibrosis using 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC). Hepatic collagen was quantified by hydroxyproline (OHP) and collagen proportionate area (CPA) and TGF-beta signalling by phosphorylated SMAD3 (pSMAD3) levels. An ex vivo study evaluated the effects of 2-day treatment with PLN-74809 on the expression of profibrotic genes, COL1A1 and COL1A2, in precision-cut liver slices (PCLivS) from tissue explants of participants with biliary fibrosis (n = 2 PSC;n = 2 primary biliary cholangitis [PBC]). A review of available blinded safety data from the enrolling Phase 2a study in participants with PSC was performed (NCT04480840). Results: PLN-74809 dose-dependently reduced OHP (up to ∼30%, p < 0.05), CPA (up to ∼50%, p < 0.05) and pSMAD3 (up to ∼40%, p < 0.001) in the BALBc.Mdr2-/- mouse model, as well as COL1A1 and COL1A2 gene expression (up to ∼30%, p = 0.0789) in PCLivS from tissue explants of participants with PSC and PBC. PLN-75068 reduced OHP (up to ∼20%, p < 0.05) in DDC-injured mice in a dose-dependent manner. PLN-74809waswell tolerated in participants with PSC. Most adverse events (AEs)were mild;nonewere severe. The most common AE was mild headache. One participant experienced serious AEs at least 20 days after the last dose of study drug, deemed not related by the investigator. One participant prematurely discontinued due to COVID-19. PLN-74809 pharmacokinetics in participants with PSC were consistent with those of healthy participants. Conclusion: Pharmacological inhibition of integrins alpha-v/beta-6 and alpha-v/beta-1 demonstrated antifibrotic activity in two models of biliary fibrosis and in PCLivS from participants with PSC or PBC. Available safety findings from participants with PSC enrolled in the ongoing Phase 2a INTEGRIS-PSC study, continue to support the favourable tolerability profile of PLN-74809.

14.
Cancer Research ; 82(12), 2022.
Article in English | EMBASE | ID: covidwho-1986458

ABSTRACT

Social isolation is associated with increased risk and mortality from many diseases, such as breast cancer. Socially isolated breast cancer survivors have a 43% higher risk of recurrence and a 64% higher risk of breast cancer-specific mortality than socially integrated survivors. Since Covid-19 has dramatically increased the incidence of social isolation, it is important to determine if social isolation affects the response to endocrine therapy and/or recurrence after the therapy is completed. Since previous studies indicate that social isolation increases circulating inflammatory cytokines, we investigated if an anti-inflammatory herbal mixture Jaeumkanghwa-tang (JGT) prevents the adverse effects of social isolation on breast cancer mortality. Estrogen receptor positive mammary tumors were initiated with 7,12-dimethylbenz[a]anthracene. When a rat developed a palpable mammary tumor, it was either socially isolated (SI) by housing it singly or a rat was allowed to remain group-housed (GH). Tamoxifen (340ppm via diet) or tamoxifen + JGT (500ppm via drinking water) started when the first mammary tumor reached a size of 11 mm in diameter. Tamoxifen administration ended when a complete response to this therapy had lasted for 9 weeks (corresponds to 5 years in women). During tamoxifen therapy, social isolation non-significantly reduced the rate of complete responses to 21%, from 31% in GH group (p>0.05). After the therapy was completed, SI significantly increased local mammary tumor recurrence (p<0.001;45% GH vs 75% SI). RNAseq analysis was performed in the mammary glands. Gene set enrichment analysis (GSEA) of transcriptome showed that the increased recurrence risk in socially isolated rats was associated with an enrichment of IL6/JAK/STAT3 signaling: this result was confirmed in the tumors. In addition, oxidative phosphorylation (OXPHOS) pathway was suppressed: the suppressed genes included those involved in mitochondrial pyruvate transport and conversion of pyruvate to acetyl CoA as well as genes in the TCA cycle and mediating electron transport in mitochondrial complexes I-IV. Social isolation also increased the expression of inflammatory receptor for advanced glycation end-products (RAGE) (p≤0.05). Consumption of an anti-inflammatory JGT inhibited IL6/JAK/STAT3 signaling, upregulated OXPHOS signaling and prevented the increased risk of mammary cancer recurrence in socially isolated animals. The percentage of recurrences in the SI rats dropped from 75% without JGT to 22% with JGT (p<0.001). Breast cancer mortality among socially isolated survivors may be most effectively prevented by focusing on the period following endocrine therapy using tools that inhibit IL6/JAK/STAT3 inflammatory cytokine signaling and correct disrupted OXPHOS and mitochondrial dysfunction.

15.
Gastroenterology ; 162(7):S-886, 2022.
Article in English | EMBASE | ID: covidwho-1967381

ABSTRACT

Endothelial cells (ECs) lining the blood vessels of all organs express the SARS-CoV2 receptor. In the absence of preexisting tissue damage, the virus would need to pass through the ECs to blood vessels to infect other tissues. Thus, EC are a target for SARS-CoV-2 infection and a conduit for viral dissemination to distant organs. We hypothesized that ECs infection and/ or injury are the mechanisms of COVID-19 pathology and multi-organ dissemination and injury. Methods: Human studies: We used lung, heart, kidney, and small bowel specimens obtained during autopsies (n=5) from COVID-19 patients and uninfected subjects. Studies: 1) histologic evaluation of endothelial damage and endotheliitis, 2) immunohistochemistry for vWF, PAI-1, VCAM-1, & ICAM-1. Studies in cultured human microvascular ECs (HMVECs): We cultured lung and cardiac HMVECs in the presence or absence of SARSCoV- 2 S1 and/or S2 protein (10 ng/ml) for 0 - 24 hr. Studies:1) cell viability and proliferation;2) angiogenesis on Matrigel and cell migration;3) mitochondrial membrane potential (MMP);4) RNA seq analysis;5) Western blotting for vWF, PAI-1, VCAM-1, and ICAM-1. We examined the protective effect of melatonin, Coenzyme Q10 and nerve growth factor on S1/S2 protein induced HMVEC cell damage. Results: Histopathologic examination revealed presence of endothelial abnormalities and endotheliitis with marked presence of inflammatory cells in vessel wall & lumen, and fibrinous microthrombi) in lung, heart & kidney in autopsy specimens of COVID-19 patients. Immunostaining visualized increased vWF, PAI-1, VCAM- 1, & ICAM-1 in COVID-19. In in vitro study, S1 and S2 proteins induced endothelial injury, reduced angiogenesis and phosphorylated/activated Erk and Akt proteins in cultured HMVECs. Treatment of HMVECs for 1 & 4 hours with S2 but not S1 protein increased ICAM-1 levels by 1.4- to 1.8-fold (P < 0.001). RNA Seq analysis showed that treatment of HMVECs with S1 and S2 proteins upregulated VCAM-1, ICAM-1 and E-selectin mRNA in cultured HMVECs. Melatonin, Coenzyme Q10 and NGF stimulated angiogenesis in HMVECs by 2.4-, 1.3-&1.4-fold (all P < 0.001). Conclusions: 1) Significant endothelial abnormalities, blood vessel damage and endotheliitis are present in lung, heart and kidney autopsy specimens of COVID-19 patients, 2) There is increased expression of vWF, PAI-1, VCAM-1, and ICAM- 1 in lung, heart, and kidney specimens of COVID-19 patients, 3) Treatment of cultured HMVECs with SARS-CoV-2 S1 and S2 proteins upregulates VCAM-1, ICAM-1 and Eselectin expression, 4) SARS-CoV-2 S1 and S2 proteins induce endothelial injury in cultured HMVECs, and 5) melatonin, Coenzyme Q10 and NGF stimulated EC function. These studies uncovered novel mechanism – endothelial dysfunction underlying SARS-CoV-2 and identified melatonin, Coenzyme Q10 and NGF as potential drugs for treatment of COVID- 19-induced EC injury

16.
Cardiovascular Research ; 118:i19, 2022.
Article in English | EMBASE | ID: covidwho-1956561

ABSTRACT

Background and purpose: Increased inflammatory cytokines, including interleukin 6 (IL-6), are associated to enhanced arrhythmogenic risk, including atrial fibrillation [1]. Moreover, direct effects of cytokines on ion channels are emerging as important mediators of arrhythmogenic remodeling [2]. In line with this, enhanced arrhythmogenesis in COVID-19 patients is hypothesized to be driven by cytokine storms, a well demonstrated condition in this setting [3]. To dissect the underlying mechanisms explaining such an association, we evaluated the proarrhythmogenic alterations of IL-6, assessing the impact on the expression of Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, of the regulatory subunits MiRP1, and on the action potential (AP) profile in HL-1 cardiomyocytes (CMs). In human left atrial samples we studied the relation occurring between the expression levels of IL-6 and of HCN channels. In human induced pluripotent stem cell (hiPSC)-derived CMs we evaluated the acute effects of IL-6 on pacemaker activity. Methods: HL-1 CMs exposed to 50 ng/ml IL-6 or vehicle were collected after 0, 0.5, 6, 12, 24 and 48 h to study intracellular signaling, ion channel expression and AP profile. The latter was assessed through a high-throughput system allowing optical detection of APs with optical stimulation. In human atrial samples obtained from patients undergoing surgery, IL-6 and HCN mRNA expression were analyzed by quantitative RT-PCR. The acute effects on pacemaker activity were evaluated in hiPSC-derived CMs exposed to increasing concentrations of IL-6. Results: In HL1 CMs IL-6 rapidly induces STAT3 phosphorylation, demonstrating the activation of IL-6 signaling cascade. IL-6 modifies HCN channel transcript and proteins at different time points, evidencing a significant downregulation of HCN4 isoform and significant upregulations of HCN1, HCN2 and MiRP1. In line with this, in human left atrial samples, expression levels of IL-6 were linearly and directly related to HCN1 channel, while they were linearly and inversely related to HCN4. Electrophysiological recordings on HL-1 CMs showed a decreasing trend of AP amplitude and of maximum diastolic potential, while AP durations tended to increase. In hiPSC-derived CMs IL-6 reduces the frequency of AP in a concentration-dependent manner. Conclusions: Our data demonstrate that in HL-1 CMs IL-6 activates a STAT3 dependent intracellular signaling that is associated to subsequent variation of HCN channel expression and a concurrent alteration of AP profile. The relation between IL-6 and HCN1,4 expression in human samples suggests a mechanistic link between IL-6 levels and ionic channel targets, including HCN channels. The reduction of AP frequency in hiPSC-derived CMs suggests a direct interaction with ion channels. We hypothesize that these modifications may lay the basis to enhance the propensity of atria to develop arrhythmias in condition of elevate IL-6 levels.

17.
Alcoholism: Clinical and Experimental Research ; 46:142A, 2022.
Article in English | EMBASE | ID: covidwho-1937893

ABSTRACT

As the delta and omicron SARS-CoV-2 variants spread across the world, more tools to fight off serious infection have been developed. COVID antiviral drugs that can be taken orally at home could cut serious illness and reduce the risk of hospitalization and death. However, significant population of people consume alcohol before the infection and use of the antiviral drugs, which could potentiate side effects of the drugs on the liver. We investigated the role of alcohol in anti-Covid drug-induced stress responses in live cells. METHODS: HepG2 cells or primary mouse hepatocytes (PMH) were pre-treated with alcohol (50 mMlow dose or 100 mMhigh dose) for 6-24 hours and then treated with the newly developed oral anti-Covid drugs: nirmatrelvir, ritonavir, molnupiravir, and remdesivir at 10- 30 lg/ml for 6-24 hours. Unfolded protein response (UPR)/ER stress molecular markers (e.g. IRE1 GRP78, PERK, Xbp1 and CHOP), Golgi stress response (GSR) markers of GCP60, HSP47 and TFE3, and STAT3 were measured after the treatments. Cell death was assessed through double staining the liver cells with Syntox Green and Hoesche's Blue. RESULTS: ER stress response as indicated by IRE1, Xbp1 and CHOP was insignificant or mild in either HepG2 or PMH treated individually with alcohol at the low dose, nirmatrelvir, ritonavir, molnupiravir, or remdesivir. Alcohol or remdesivir induced moderate GSR based on mRNA increase of GCP60, HSP47 and TFE3, which was accompanied with apparent Golgi fragmentation in either HepG2 or PMH. Cell death rates in HepG2 treated with alcohol, nirmatrelvir, ritonavir, molnupiravir, or remdesivir individually were less than 5%. Pre-exposure to alcohol combined with subsequent treatment with nirmatrelvir, ritonavir molnupiravir, or remdesivir significantly increased both ER stress and GSR markers and expression of phosphorylated STAT3 (p-STAT3). Most significantly, cell death rates in HepG2 or PMH were increased by 2- to 5-fold by pre-alcohol exposure plus ritonavir, nirmatrelvir, molnupiravir, or remdesivir. The organelle stress markers, p-STAT3 and cell death were all further increased in alcoholand anti-Covid drug-treated HepG2 or primary mouse hepatocytes that were pre-infected with the lentiviruses that were pseudotyped with the SARS-CoV-2 spike protein. CONCLUSION: Our results indicate that pre-exposure to alcohol potentiates the liver cells to anti-Covid-19 drugs induced stress responses and cell death.

18.
Journal of Hypertension ; 40:e29, 2022.
Article in English | EMBASE | ID: covidwho-1937690

ABSTRACT

Objective: COVID19-associated immunopathology is associated with increased production of interferon (IFN)-alpha (IFNα) and lambda3 (IFNL3). Effects of IFNs are mediated by interferon-stimulated genes (ISGs) and influence expression of angiotensin-converting enzyme 2 (ACE2), the receptor for S-protein (S1P) of SARS-CoV-2. Increasing evidence indicates vascular inflammation in cardiovascular sequelae of COVID19. We hypothesized that S1P-induced immune/inflammatory responses in endothelial cells (EC) are mediated via IFNα and IFNL3. Design and method: Human ECs were stimulated with S1P (1 μg/mL), IFNα (100ng/mL) or IFNL3 (100IU/mL). Because ACE2, metalloproteinase domain-17 (ADAM17) and type-II transmembrane serine protease (TMPRSS2) are important for SARS-CoV-2 infection, cells were treated with inhibitors of ADAM17 (marimastat, 3.8 nM), ACE2 (MLN4760, 440pM), and TMPRSS2 (camostat, 50 μM). Gene and protein expression was investigated by real-time PCR immunoblotting, respectively. Vascular function was assessed in mesenteric arteries from wild-type (WT) normotensive and hypertensive mice and in ISG15-deficient (ISG15KO) mice. Results: EC stimulated with S1P increased expression of IFNα (3-fold), IFNL3 (4-fold) and ISG (2-fold)(p < 0.05). EC exhibited higher responses to IFNα (ISG15: 16-fold) than to IFNL3 (ISG15: 1.7-fold)(p < 0.05). S1P increased gene expression of IL-6 (1.3-fold), TNFα (6.2-fold) and IL-1β (3.3-fold), effects that were maximized by IFNs. Only marimastat inhibited S1P effects. IL-6 was increased by IFNα (1,230pg/mL) and IFNL3 (1,124pg/mL) vs control (591pg/ mL). This was associated with increased phosphorylation of Stat1 (134%), Stat2 (102%), ERK1/2 (42%). Nitric oxide production and eNOS phosphorylation (Ser1177) were reduced by IFNα and (40%) and IFNL3 (40%). Reduced endothelium relaxation maximal response (%Emax) was observed in vessels from WTmice stimulated with IFNα (67%) and IFNL3 (71%) vs control (82%)(p < 0.05) but not in vessels from ISG15KO mice. Increased contraction was observed only in vessels from hypertensive mice treated with IFNα (9.1 ± 0.5mN vs control: 7.3 ± 0.3mN, p < 0.05). Conclusions: In ECs, S1P, IFNα and IFNL3 increased ISG15 and IL-6, processes that involve ADAM17. Inflammation induced by S1P was amplified by IFNs. IFNs induce vascular dysfunction through ISG15-dependent mechanisms, with augmented effects in hypertension. Our findings demonstrate that S1P induces immune/inflammatory responses that may be important in endotheliitis associated with COVID-19. This is especially important in the presence of cardiovascular risk factors, including hypertension.

19.
American Journal of Respiratory and Critical Care Medicine ; 205(1), 2022.
Article in English | EMBASE | ID: covidwho-1927931

ABSTRACT

Rationale: The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions via the acute respiratory distress syndrome (ARDS). The early immune suppression of SARS-CoV-2 then subsequent inflammation suggests an unusual ability to cause immune dysregulation. Host transforming growth factor beta (TGF-β) is an immunesuppressing and profibrotic cytokine frequently “hijacked” by microbes to evade immune detection. We discovered a KRFK domain (a potent activating motif for latent TGF-β) in the SARS-CoV-2 nonstructural 15 (NSP15) protein. We hypothesized that this NSP15 protein causes immune dysregulation by activation of latent TGF-β and subsequent activation of immunosuppressive Tregulatory (Treg) cells, and that substantial TGF-β is present in the lungs of COVID-19 ARDS patients. Methods: We evaluated TGF-β1 concentrations in endotracheal aspirates (ETA) of 27 COVID-19 ARDS patients by ELISA. We produced recombinant SARS-CoV-2 NSP15 protein in E. coli and tested its ability to activate latent TGF-β1 using in vitro assays. TGF-β inhibitors were assessed for their ability to block effects. We obtained blood mononuclear cells from healthy subjects and isolated Tregs to assess their activation state via intracellular smad-2 phosphorylation (pSMAD2) using flow cytometry. Results: The KRFK domain was present in all SARS-CoV-2 variants. High concentrations of both active and total TGF-β1 were detected in ETA of COVID-19 ARDS patients (150 +/- 34 pg/ml active;1,819 +/- 304 pg/ml total) in a range previously shown to affect T cell function. NSP15 at 2.4 nM increased activation of latent TGF-β 12-fold (P < .001 vs. vehicle), compared to an 11% activation with the positive control thrombospondin-1 (TSP1;10 nM) (Figure). TGF-β receptor inhibitors blocked NSP15 effects on latent TGF-β activation and intracellular TGF-β1 signaling in a bioassay by over 95% (p<.01). At tested concentrations (25, 50, 100 nM) NSP15 increased Treg pSMAD2 levels via activation of latent TGF-β1, exceeding levels seen in Tregs stimulated with 400 pM of active TGF-β1 (+ control) (pSMAD2 + cells: vehicle 1.1%, active TGF-β1 43%, NSP15/latent TGF-β1 49-56%). Conclusions: High concentrations of active and total TGF-β1 are present in the lungs of COVID-19 ARDS patients, suggesting SARS-CoV-2 uses host TGF-β hijacking as a mechanism for immune evasion. The NSP15 protein of SARSCoV- 2 potently activates latent TGF-β, leading to Treg activation. TGF-β inhibitors are potent inhibitors of these NSP15 effects. A strategy to block NSP15-mediated effects with TGF-β inhibitors is an innovative therapy worthy of testing in animal models of COVID-19.

20.
American Journal of Respiratory and Critical Care Medicine ; 205(1), 2022.
Article in English | EMBASE | ID: covidwho-1927865

ABSTRACT

RATIONALE: Airway inflammation plays a role in airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), chronic bronchitis, and COVID-19 that affect millions of people worldwide. Previously, we showed that acute (24-h) exposure to the pro-inflammatory cytokine tumor necrosis factor α (TNFα) triggers an endoplasmic reticulum (ER) stress response in human airway smooth muscle (hASM) cells. In hASM cells, TNFα selectively activates the inositol requiring enzyme 1α (IRE1α) ER stress pathway with downstream splicing of X-box binding protein 1 (XBP1s), which transcriptionally activates expression of target genes that include proteins mediating phosphorylation of dynamin-related protein 1 (pDRP1) at the Ser616 (S616) residue. Increased pDRP1 at S616 is associated with mitochondrial fission (fragmentation);however, DRP1 is also phosphorylated at Ser637 (S637) residue, and the balance between phosphorylation at S616 and S637 regulates the translocation of DRP1 from cytosol to mitochondria and subsequent fragmentation of mitochondria. In the present study, we hypothesized that TNFα induces ER stress leading to XBP1s mediated increase in the expression of specific kinases that phosphorylate DRP1 at S616 and promote mitochondrial fragmentation. METHODS: hASM cells, dissociated from bronchial tissue obtained from patients with no history of respiratory diseases, were exposed to TNFα (20 ng/ ml for 6-h). As an inhibitor of fragmentation, cells were treated with Mdivi1 (50 μM for 6-h), GTPase inhibitor of DRP1. The expression and phosphorylation status of IRE1α, DRP1, XBP1, cyclin dependent kinases (CDK1, CDK5) and cyclin B1 were quantified by Western blot and immunohistochemistry. Mitochondrial morphology was assessed by 3D confocal microscopy using MitoTracker. XBP1-targets were confirmed by chromatin immunoprecipitation (ChIP) and quantitative PCR. RESULTS: Bioinformatics analysis predicted putative binding sites of XBP1 in the promoter region of CDK1, CDK5 and cyclin B1 genes that are reported to phosphorylate DRP1 at S616. Consistent with our previous findings, we found that TNFα increases IRE1α phosphorylation and XBP1 splicing. The TNFα induced increase in XBP1s transcriptionally activated expression of CDK1, CDK5 and cyclin B1 and leads to subsequent phosphorylation of DRP1 at S616 with no change in S637 phosphorylation. As a result, TNFα mediated increase in the ratio of S616/ S637 phosphorylation, which promoted translocation of DRP1 from cytosol to mitochondria and mitochondrial fragmentation. We also showed that Mdivi1 mediated inhibition of DRP1-GTPase activity ameliorated phosphorylation at S616 residue and significantly reduced mitochondrial fragmentation. CONCLUSIONS: The present study elucidates the mechanism underlying TNFα induced ER stress and mitochondrial fragmentation.

SELECTION OF CITATIONS
SEARCH DETAIL